Sunday, September 19, 2010

Human eye

The human eye is an organ which reacts to light for several purposes.
As a conscious sense organ, the eye allows vision. Rod and cone cells in the retina allow conscious light perception and vision including color differentiation and the perception of depth. The human eye can distinguish about 10 million colors.
In common with the eyes of other mammals, the human eye's non-image-forming photosensitive ganglion cells in the retina receive the light signals which affect adjustment of the size of the pupil, regulation and suppression of the hormone melatonin and entrainment of the body clock.

General properties
The eye is not properly a sphere, rather it is a fused two-piece unit. The smaller frontal unit, more curved, called the cornea is linked to the larger unit called the sclera. The corneal segment is typically about 8 mm (0.3 in) in radius. The sclera constitutes the remaining five-sixths; its radius is typically about 12 mm. The cornea and sclera are connected by a ring called the limbus. The iris – the color of the eye – and its black center, the pupil, are seen instead of the cornea due to the cornea's transparency. To see inside the eye, an ophthalmoscope is needed, since light is not reflected out. The fundus (area opposite the pupil) shows the characteristic pale optic disk (papilla), where vessels entering the eye pass across and optic nerve fibers depart the globe.
Dimensions
The dimensions differ among adults by only one or two millimeters. The vertical measure, generally less than the horizontal distance, is about 24 mm among adults, at birth about 16–17 mm. (about 0.65 inch) The eyeball grows rapidly, increasing to 22.5–23 mm (approx. 0.89 in) by the age of three years. From then to age 13, the eye attains its full size. The volume is 6.5 ml (0.4 cu. in.) and the weight is 7.5 g. (0.25 oz.)
Components
The eye is made up of three coats, enclosing three transparent structures. The outermost layer is composed of the cornea and sclera. The middle layer consists of the choroid, ciliary body, and iris. The innermost is the retina, which gets its circulation from the vessels of the choroid as well as the retinal vessels, which can be seen in an ophthalmoscope.
Within these coats are the aqueous humor, the vitreous body, and the flexible lens. The aqueous humor is a clear fluid that is contained in two areas: the anterior chamber between the cornea and the iris and exposed area of the lens; and the posterior chamber, behind the iris and the rest. The lens is suspended to the ciliary body by the suspensory ligament (Zonule of Zinn), made up of fine transparent fibers. The vitreous body is a clear jelly that is much larger than the aqueous humor, and is bordered by the sclera, zonule, and lens. They are connected via the pupil.
Dynamic range
The retina has a static contrast ratio of around 100:1 (about 6 1/2 f-stops). As soon as the eye moves (saccades) it re-adjusts its exposure both chemically and geometrically by adjusting the iris which regulates the size of the pupil. Initial dark adaptation takes place in approximately four seconds of profound, uninterrupted darkness; full adaptation through adjustments in retinal chemistry (the Purkinje effect) are mostly complete in thirty minutes. Hence, a dynamic contrast ratio of about 1,000,000:1 (about 20 f-stops) is possible. The process is nonlinear and multifaceted, so an interruption by light merely starts the adaptation process over again. Full adaptation is dependent on good blood flow; thus dark adaptation may be hampered by poor circulation, and vasoconstrictors like alcohol or tobacco.
The eye includes a lens not dissimilar to lenses found in optical instruments such as cameras and the same principles can be applied. The pupil of the human eye is its aperture; the iris is the diaphragm that serves as the aperture stop. Refraction in the cornea causes the effective aperture (the entrance pupil) to differ slightly from the physical pupil diameter. The entrance pupil is typically about 4 mm in diameter, although it can range from 2 mm (f/8.3) in a brightly lit place to 8 mm (f/2.1) in the dark. The latter value decreases slowly with age, older people's eyes sometimes dilate to not more than 5-6mm.

Nutrients of the eye
The ciliary body is triangular in horizontal section and is coated by a double layer, the ciliary epithelium. The inner layer is transparent and covers the vitreous body, and is continuous from the neural tissue of the retina. The outer layer is highly pigmented, continuous with the retinal pigment epithelium, and constitutes the cells of the dilator muscle.
The vitreous is the transparent, colorless, gelatinous mass that fills the space between the lens of the eye and the retina lining the back of the eye. It is produced by certain retinal cells. It is of rather similar composition to the cornea, but contains very few cells (mostly phagocytes which remove unwanted cellular debris in the visual field, as well as the hyalocytes of Balazs of the surface of the vitreous, which reprocess the hyaluronic acid), no blood vessels, and 98-99% of its volume is water (as opposed to 75% in the cornea) with salts, sugars, vitrosin (a type of collagen), a network of collagen type II fibers with the mucopolysaccharide hyaluronic acid, and also a wide array of proteins in micro amounts. Amazingly, with so little solid matter, it tautly holds the eye.
Relationship to life requirements
Eyes are generally adapted to the environment and life requirements of the organism which bears them. For instance, the distribution of photoreceptors tends to match the area in which the highest acuity is required, with horizon-scanning organisms, such as those that live on the African plains, having a horizontal line of high-density ganglia, while tree-dwelling creatures which require good all-round vision tend to have a symmetrical distribution of ganglia, with acuity decreasing outwards from the centre.
Of course, for most eye types, it is impossible to diverge from a spherical form, so only the density of optical receptors can be altered. In organisms with compound eyes, it is the number of ommatidia rather than ganglia that reflects the region of highest data acquisition. Optical superposition eyes are constrained to a spherical shape, but other forms of compound eyes may deform to a shape where more ommatidia are aligned to, say, the horizon, without altering the size or density of individual ommatidia. Eyes of horizon-scanning organisms have stalks so they can be easily aligned to the horizon when this is inclined, for example if the animal is on a slope. An extension of this concept is that the eyes of predators typically have a zone of very acute vision at their centre, to assist in the identification of prey. In deep water organisms, it may not be the centre of the eye that is enlarged. The hyperiid amphipods are deep water animals that feed on organisms above them. Their eyes are almost divided into two, with the upper region thought to be involved in detecting the silhouettes of potential prey — or predators — against the faint light of the sky above. Accordingly, deeper water hyperiids, where the light against which the silhouettes must be compared is dimmer, have larger "upper-eyes", and may lose the lower portion of their eyes altogether. Depth perception can be enhanced by having eyes which are enlarged in one direction; distorting the eye slightly allows the distance to the object to be estimated with a high degree of accuracy.
Acuity is higher among male organisms that mate in mid-air, as they need to be able to spot and assess potential mates against a very large backdrop. On the other hand, the eyes of organisms which operate in low light levels, such as around dawn and dusk or in deep water, tend to be larger to increase the amount of light that can be captured.
It is not only the shape of the eye that may be affected by lifestyle. Eyes can be the most visible parts of organisms, and this can act as a pressure on organisms to have more transparent eyes at the cost of function.
Eyes may be mounted on stalks to provide better all-round vision, by lifting them above an organism's carapace; this also allows them to track predators or prey without moving the head.
References.
1-^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Land, M F; Fernald, R D (1992). "The Evolution of Eyes". Annual Review of Neuroscience 15: 1–29. doi:10.1146/annurev.ne.15.030192.000245. PMID 1575438.
2-^ a b c d e Frentiu, Francesca D.; Adriana D. Briscoe (2008). "A butterfly eye's view of birds". BioEssays 30 (11-12): 1151. doi:10.1002/bies.20828. PMID 18937365.
3-^ a b c d Cronin, T. W.; Porter, M. L. (2008). "Exceptional Variation on a Common Theme: the Evolution of Crustacean Compound Eyes". Evolution Education and Outreach 1: 463–475. doi:10.1007/s12052-008-0085-0. edit
4-Ali, Mohamed Ather; Klyne, M.A. (1985). Vision in Vertebrates. New York: Plenum Press. p. 8. ISBN 0-306-42065-1.
5-^ a b c d e f Land, M. F. (1989). "The eyes of hyperiid amphipods: relations of optical structure to depth" (PDF). Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 164 (6): 751–762. doi:10.1007/BF00616747. http://www.springerlink.com/index/P0P467K474307K3N.pdf.
6-Zeil, J. (1996). "The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda)" (PDF). Journal of Experimental Biology 199 (7): 1569–1577. http://jeb.biologists.org/cgi/reprint/199/7/1569.pdf.

0 comments: